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Dynamic equations have been obtained for the two~point double
correlations of the fluctuation velocities of a fluid and the particles
suspended in it at low volume concentrations of the solid phase. In
the case of uniform isotropic turbulence these equations can be con-
siderably simplified. The final period of decay of isotropic turbulence
has been studied in detail. At this stage in the case of high-inertia
particles the inhomogeneous-fluid turbulence is similar to the turbu-
lence of a homogeneous fluid (without particles) in the sense that the
presence of the particles affects only the fluctuation energy but leaves
unchanged the spatial scales of turbulence and the spatial energy spec-
trum function. The suspended particles lead to exponential damping
of the turbulent pulsations.

Little theoretical information is ava11able on the hydrodynamics
of a suspension of fine particles in a turbulent liquid or gas. Research
has been mainly confined to the behavior of the individual particles
in a given turbulence field (1], The problem of the turbulent motion
of the mixture as a whole has been examined by Barenblatt [2], who
derived the equations of motion of the mixture, using Kolmogorov's
hypothesis 10 close them. Hinze [3] has also attempted to derive equa-
tions for turbulent pulsations of the mixture, However, as Murray
showed [4], Hinze's equations contradict Newton's third law.

The effect of suspended particles on the turbulence of a two-phase
flow is governed by the noncorrespondence of the local velocities of
the particles and the medium. The forces of resistance to the motion
of the particles relative to the fluid lead to additional dissipation of
fluctuation energy and decay of turbulence [2]. On the other hand,
if the averaged velocities of particles and medium do not correspond,
the suspended particles may also have a destabilizing effect [5, €],
causing energy transfer from the averaged to the pulsating motion.
Below we shall consider the case where the averaged velocities of the
two phases coincide, i.e., we shall deal only with the first of the
two above-mentioned effects.

1. Formulation of the problem. Following Baren-
blatt [2], we write the equation of motion of the fluid
and the suspended particles in the form
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Here v, and w; are the velocities of fluid and parti-
cles, and d, and d, are the densities of the fluid and
the particle material, p is the volume concentration
of the particles, gj are the components of gravita-
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tional acceleration, p(i), p(z) and T(ﬁ, Tji are the
pressures and viscous stress tensors for fluid and
particles, respectively, f; is the interaction force
operating between particles and fluid normalized for
unit volume of the mixture.

- We shall assume that d; = const (incompressible
fluid), dy = const, and concentration p <« 1. The latter
assumption enables us to set dy (1 —p) =d, in the first
of equations (1.1). In view of the smallness of p we

can neglect the effect of particle interaction, i.e., take

and p® equal to zero. Setting
dv; | O

where u is the viscosity of the fluid, instead of (1.1) we
get
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The continuity equation for the fluid and the mass
balance equation for the particles, given the above as-
sumption that p « 1, assume the form

9; % dpw,

T =0, =0. (1.3)

" As usual, we consider the turbulence uniform in the
sense that, firstly, the averaged characteristics of the
motion in the region in question do not depend on the
coordinates and time, and, secondly all the two-point
correlations depend only on the vector of the distance
between the points, but not on the location of these
points.

We introduce the fluctuations in velocity, pressure
and particle concentration ‘ ‘

v= (e + o, w = (wsd v,
p=<p>+7p, p=<>+0.

The sign () denotes averaging with respect to time
or a small physical volume. In accordance with the
usual method [7], we assume that these time or space
averages are identical with the probability means.

Finally, we assume that for averaged motion there
is no force {fy), i.e., {vj) = {wy. This assumption is
necessary, in particular, in studying isotropic turbu-
lence. From the physical viewpoint, it is, generally
speaking, equivalent to the assumption that the forces
of gravity are small compared with the viscous and
inertia forces.

2. The dynamic equations for the correlations. It
is easy to see that for the fluctuations vi' the first of
equations (1.3) holds; from the second of equations
(1.3} it follows that
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Neglecting p in the first of equations (1.1) and in the
continuity equation for the fluid means assuming that
correlations of the type
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are small compared with the correlations of the same

order for the velocities vi' and wi. However, such cor-
. : . ! . .

relations, in which o = p/{p) is used instead of p', are

not necessarily small. Therefore in the general case
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and similarly for the corresponding averaged quanti-
ties. This relation is more exact than that used in [2]
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At point A in space the equations for the velocity fluctuations
corresponding to the flow equations (1.2) take the form
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Here and henceforth the prime that previously denoted fluctuation
quantities has been dropped; as before averaged quantities are denoted
by <vp, <wp  etc.

Multiplying the first of these equations by the value of the fluctua-
tions of the j~th component of velocity at the point B and adding the
result to the similar equation for the j-th component of velocity at
the point B multiplied by (vi)4, we obtain, with account for the first
of equations (1. 3) and the fact that differentiation at the point A does
not extend to (Vj)B, and vice versa,
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At f; = 0, this equation coincides with the one usually employed
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Introducing the correlation notation
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and the distance £; = (xj)g ~ (x{)p between A and B, as
a result of averaging Eq. (2.2) we get
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Quite analogously, taking into account (2.1), we get
the following equation for the double correlation with
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respect to particle velocities:
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and the correlations S(W) are expressed in terms of w;
just as 8V) are expressed in terms of v;.

Using (1.3) and (2.1), it is also easy to obtain the
equation for the dynamies of the change in the mixed
correlation {(vi) Alwy) B>- Adding the equation obtained
by interchanging the pairs of subscripts i, j and A, B,
we get
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The correlations K(p J), wag, élw; (or \Ilf }) are ex-

pressed in terms of w1 {or vi) in the same way as

v) _(v) (v) (w)

Kp,j» Ki,p» 24,5 (or ¥, J) are expressed in terms of
vy (or wl)

To make the above equations definite, we must find
the representation of the correlations containing the
force f; in terms of the correlations with respect to
fluid and particle velocities and the concentration p.
For this purpose we must use the expression for fj in
terms of v, wand p (v and w are the total fluid and
particle velocity vectors). Unfortunately, an analytical
expression for the force developed by the fluid on a
single particle can be given only if the fluid velocity
varies little over distances large compared with the

(2, w)
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size of the particles, i.e., the spatial microscales of
turbulence must be much greater than the particle
size. -

Here it is assumed that the force F developed by
the fluid on a single particle is given by Stokes for-
mula. Then for the force f; we get

Ji= B Fy = ey (vi—wy), c= o s (2.9)

where 9 is the volume and a thevradius of the particle.

In the general case the followmg expression has been proposed for
F[8):
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The first term in the right side is the excess intertia force for
accelerated relative motion of the particle, the second is the excess
pressure drop force, and the third the linear resistance force with
allowance for the nonstationary effect.

The first and second terms can be neglected at d, > d;., The
integral term can be nieglected if the particle size is sufficiently small,

Assumption (2.9) concerning the proportionality of
the force fj to the relative velocity vi ~ wj is equiva-
lent to the following assumptions which are fundamen-
tal to this study:

p<1v a<7\,,

where A is the internal scale of turbulence.
From the definition of the correlations &; ; and ¥j j,
using (2.9), we get
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Substituting (2.12) into Egs. (2.4), (2.5}, and (2.7),
we obtain the system
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Thus, in the case of a nonhomogeneous fluid the
single equation for the velocity correlation (Vi j)A,B
for a homogeneous fluid is replaced by three equations
for the three double correlations (Vi j)A,B: (Wi,jlA,B

‘ and (Ti,j)A,B'

3. Decay of isotropic turbulence. As is known [1], for isotropic
turbulence ig an incompressible fluid correlations of the type < gvi>
(where g is any scalar) are identically equal to zero, In particular,

Kl(vg = KE,V)J 0. For a compressible fluid, from the condition of

invariance with respect to spatial rotations it follows that
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where 1 is the scalar distance between points A and B, Therefore, as
it is easy to see,
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It is also easy to show that
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(this is immediately clear from Egs. (2.13); the terms with M, K, j
containing "nonisotropic” muiltipliers < wi>, must vanish in describ-
ing isotropic turbulence). Moreover, for the double and triple correla-
tions in (2.13) from considerations of general invariance there follow
the known relations that enable these correlations to be represented

in terms of a small number of scalar functions of r and time [1]. All
this makes it possible considerably to simplify (2.19).

Below we shall discuss in detail only the case where
the influence of the viscous and interaction forces be-
comes predominant as compared with the inertia
forces {*’final decay period’’ to use the terminology of
Batchelor and Townsend [9]). Then, in accordance
with the general principle, we can neglect the triple
correlations in (2.13). Contracting (2.13), in this case
we get the following system for the traces of the cor-
relation tensors:

4

1 9 é i
a—tV“ = 2v T 3 (7‘2 B I’i,i) —C <p> (ZV@',i — Ti,i)’

~—W” =—exn(2Wi; —Ti3),

] i 8 3

WTi,i :\’72—737(7‘257 Ti,i>_
— (P> +0) oy 4 26 (KX Wi + o34}

(3.1)

We shall first consider the case of high-inertia
particles: » — 0. From the second of Egs. (3.1) it fol-
lows that Wy = W; ; = W(r). In this case only damping
solutions of system (3.1) make physical sense; there-
fore Wy = 0. Thus, in the last of Egs. (3.1) we are left
with only one unknown Tj ;. However, it is not neces-
sary to solve this equation. In fact, at r = 0, Wy must
be equal to 3w}, where

we? = wy'?) = (') = (wy'.

Since W, = 0 everywhere, the quantity w, = 0 and
the fluctuations wy’ = 0. Hence and from the definition
Ty =Ty it follows that T, is identically equal to zero.
(The physical meaning of this is obvious: the param-
eter % = 0 corresponds to infinite particle density, so
that the fluctuation motions of the fluid have no effect
on the particle velocity, which.at any moment of time
is equal to its mean. Within the limits of a single
fluctuation the situation resembles the motion of a
fluid in an evacuated porous body.) Of course, the
same conclusion may be reached directly from a con-
sideration of the equations of motion as » — 0,
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Consequently, for V4 = V; ; we get the equation

av 1 4 -
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(3.2)

As is known [7], in the case of uniform turbulence the boundary
conditions imposed on the solutions of the corresponding equations
(in particular, Eq. (3.2)) are determined by the existence of statistical
uniformity of motion in space and do not require further examination,
The initial conditions consist in that at a certain instant the velocity
is a random function of the point, The actual form of this function
is unknown and only the average quantities characterizing the turbu-
lence field at the initial moment are given [7].

Here we take
IHm Vi (7, 8) = 302 = 3
=0
it being assumed that, as usual, the mean square of the
one-dimensional fluctuation velocity v must also be
determined from the solution (3.2).
Moreover, from the continuity equation for an in-
compressible fluid, with certain additional assump-
tions, it follows [1] that

<01y = 3{we'?) = 3 vy, (3.3)

r2Vy; (r, t)dr =0, (3.4)

L8

Conditions (3.3) and (3.4) are the only constraints
that the general theory permits us to impose on solu-
tions of (3.2).

It is easy to see that

Vo (7‘, t) = exp ('_ 2¢ <P> t) Qi.i (rv t) ’

where Qj i (r,t) is the double velocity correlation in
the homogeneous fluid, satisfying (3.2) without the last
term on the right side. Taking as Qj i (r,t) the known
solution of M. D. Millionshehikov [10], which is in good
agreement with experiment [9], we get

(3.5)

r
Vo(r, t) = — 4Cyt~% (3‘7@7) exp (— go;—2¢<p> ¢).(3.6)
Thus, the intensity of the fluctuations decays in ac-
cordance with the law

vo? ~ t2exp (— 2¢ (p) t) . (3.7)

Hence it is clear that the decay of turbulence in a
nonhomogeneous fluid differs very strongly from that
in the homogeneous fluid. The law of —5/2 character-
istic of the homogeneous fluid is replaced by an expo-
nential decay conditioned by the dissipation of fluctua-
tion energy on the suspended particles. For Vj i we
can write [1]

Vi PlA(r 8+ 28(r 8] =W—g rf(r, 1)) .
Using Vj ; (r, t) from (3.6), for the longitudinal f (r, t)
and lateral g(r, t) correlation coefficients we get
3 re . r2
f(r,t) =exp (— W)’ g(r,p)= ( |8vt) exp < z)'(S'S)
These expressions completely coincide with the ex-
pressions for f and g in the case of turbulence in a

homogeneous fluid. Moreover, the space scales of
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turbulence, determined from- a study of the correla-
tions, are completely defined by these coefficients.
Therefore, in the nonhomogeneous fluid considered, as
n — 0 the characteristic dimensions of the eddies are
identical to those in the homogeneous fluid.

The three-dimensional spectrum function
& krsinkr Vi, (r,O)dr = (k, ) exp{—2¢e<p>t)s
0 ) (3.9

E(k,t) =

al~

where €° (k, t) is the corresponding spectrum function
for turbulent motion of a homogeneous fluid.

Thus, the turbulent motion of a suspension of high-
inertia particles in an i‘ncompressible‘ﬂuid is, in the
final period of decay of turbulence, similar in struc-
ture to the turbulent motion of the homogeneous fluid.
The only difference is in the more rapid decay of the
fluctuations-in the first case as compared with the
second (damping of turbulence by the particles), while,
as follows from (3.8) and (3.9), the effect of the parti-
cles becomes predominant at lar'gejt.‘

This conclusion is not unexpected. It is usual to assume [1] that
since the additional dissipation of fluctuation energy is conditioned
by "slip" of the particles due to the turbulent motion of the fluid and
since this slip increases with increase in the wave number of the tur-
bulence, the presence of particles must exert an effect on the energy
spectrum of the turbulence mainly in the region of high wave num-
bers. However, in the particular case examined the particles are
actually stationary, i.e., their slip with respect to the fluid does not
depend on the wave number, as a result of which there is no distor-
tion of the structure of the turbulence energy spectrum.

As ®n — 0 it is also easy to obtain a more general
equation for Vy—with allowance for the triple velocity
correlations. Setting, as before, w¢ = 0 and W, =T, =0
we write the corresponding equation of the Karman-
Howart type [11]. For this purpose we use the known
expression of the theory of isotropic turbulence in an
incompressible fluid [1]

S A —w"[( S i
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Substituting this and the expression for Vj ; in
terms of f (r,t) in the first of Eqgs. (2.13), after trans-
formations and integration with respect to r we get

8
W) — v T () = (3.10)
. 1 8 ) 5., 2 1 8
=2VZ‘0~?W<7'4 %)-—ZC P vyt 73‘3("3/) .

For {p) = 0 this equation reduces to the usual
Karman-Howart equation.

The stabilizing action of the suspended particles
and the decrease in fluctuation energy in unit volume
of mixture as compared with the fluctuation energy of
the homogeneous fluid were established in [2] on the
basis of the fluctuation energy balance. As might have
been expected, the reverse effect, i.e., excitation of
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turbulence by the suspended particles, was not ob-
served. This is connected with the assumption that the
gravitational forces are small and that {v;) = (wy).

The authors thank G. I. Barenblatt for his useful
advice.
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